Rapid purification of gold nanorods for biomedical applications

نویسندگان

  • Federica Scaletti
  • Chang Soo Kim
  • Luigi Messori
  • Vincent M. Rotello
چکیده

Small gold nanorods (GNRs) with longitudinal plasmon absorption in the near-infrared window (700-900 nm), are of great interest for in vivo optical applications (e.g., photothermal therapy) and for their high-payload-to-carrier ratio for drug delivery. Common synthetic strategies for GNR production afford spherical and cubical nanoparticles in addition to the desired GNRS. Thus, several methods have been proposed for the selective separation of GNRs from the reaction byproducts. For example, centrifugation has been used to separate the high aspect ratio (AR) GNRs (AR>4). However, it is difficult to separate small sized GNRs with low AR (AR≤4) that are particularly promising for biomedical applications. Here, we describe a simple and fast procedure for the separation of small GNRs with AR of 4, and length of 28 nm from reaction by-products. The shape separation is achieved through centrifugation according to the following steps: - Isolation of all gold products of the reaction from the excess of cetyl trimethylammonium bromide through a first cycle of centrifugation. - Optimization of the speed and the time of centrifugation for the separation of GNRs from the reaction by-products. The effectiveness of this procedure is documented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biofunctionalization of Gold Nanorods: A Comparative Study on Conjugation Methods for Fabrication of Nanobiosensors

Gold Nanorods have promised variety of applications in biomedicine and biosensing. As a fruitful candidate for early detection and imaging, these plasmonic nanoparticles have been utilized for diagnostic applications of interest. However, prior to design and fabricate SPR-based nanobiosensors, the type and nature of conjugation with biomolecules would be of utmost importance. Herein, four strat...

متن کامل

Evaluation of effect of gold nanorods and spherical gold nanoparticles of different sizes on X-ray attenuation in computed tomography

Introduction: To date, gold nanoparticles (GNPs) have been demonstrated to have great potential as contrast agent for CT imaging and therapeutics. This study was designed to evaluate any effect on X-ray attenuation that might result from using GNPs with a variety of size, surface chemistries and shapes.   Materials and Methods: Spherical GNPs and gold nanorod...

متن کامل

Gold nanostructures: engineering their plasmonic properties for biomedical applications.

The surface plasmon resonance peaks of gold nanostructures can be tuned from the visible to the near infrared region by controlling the shape and structure (solid vs. hollow). In this tutorial review we highlight this concept by comparing four typical examples: nanospheres, nanorods, nanoshells, and nanocages. A combination of this optical tunability with the inertness of gold makes gold nanost...

متن کامل

Investigation and Determination of Osvix by Gold Nanorods by Spectrophotometry

Background and Aims: Osvix drug is an internal brand of Plavix, which is used to prevent blood coagulation in many heart diseases. The aim of the present study was to measure this drug by gold nanorods in optimum conditions and in real samples. Material and Methods: Gold nanorods were synthesized by the seeded-mediated method. Measurement of Osvix drug by gold nanorods was performed by optimizi...

متن کامل

Multifunctional optical imaging using dye-coated gold nanorods in a turbid medium.

We report multifunctional optical imaging using dye-coated gold nanorods. Three types of useful information, namely, Raman, fluorescence signals, and absorption contrast, can be obtained from a phantom experiment. These three kinds of information are detected in a nanoparticle-doped-phantom using diffuse optical imaging. Our novel nanoparticle could be used as a multimodality marker for future ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014